An overview

December 2, 2008
New Orleans, Louisiana, USA

Professor Ryoichi Komiya
Faculty of Information Technology
Multimedia University, Malaysia
Table of contents

1. Why the telemedicine D&D Forum?
2. Issues of introducing the connected health systems
3. Many projects, but limited practical telemedicine systems and services
4. But many vendors, health care and network providers
5. Design requirements (Networks, Security, Vital Sign Sensors)
6. Standardization for the connected health systems (Functional interface reference model)
7. Standardization bodies
8. Summary
1. Why the telemedicine D&D Forum?

Connected health systems using Body Area Network (BAN) are expected to monitor patients’ vital signs ubiquitously.

This will contribute;

To patients with chronic diseases:
- reducing the frequency to visit doctor’s office
- improving his/her quality of life

To doctors:
- saving time for more difficult diseases treatment
- examining patient’s vital sign data in a batched manner
2. Issues of introducing the connected health systems

1. Doctors’ acceptability
2. Patients’ acceptability
3. Business models (Who pays?)
4. Legal issues
 (1) Health insurance application
 (2) Malpractice insurance application
 (3) Doctor’s Law (face to face interview, licensure system)
3. Many projects, but limited practical telemedicine systems and services

Japan: vital signs monitoring system at Seitetsu Memorial Hospital
- Started services: 1992
- Services provided: blood pressure, ECG, temperature*, weight* are monitored for individual health management not for medical treatment
 *: manual key in to the system
- Fee to be paid by users: 2000 yen (20 USD)**/person month
 **: the hospital support: 6300yen (63 USD)/person month

Non profit
US: Center for Connected Health Partners Healthcare System, Inc.
- Started services: 1995
- Services provided:
 - Cardiac Care, Dermatology, Diabetes, SmartBeat, Wellness & Prevention
- Fees to be paid by users: ?

must have been profitable?
Canada: Capital Health (funded by the Government of Alberta)
- Started services: 2001
- Services provided:
 TeleALS, TeleCardiology, TeleDigital Cardiac Exam,
 TeleEpilepsy, TeleGastroenterology, TeleGeriatrics, TeleLung Clinic,
 TeleMental Health, TeleOphthalmology, TelePediatrics,
 TelePulmonary COPD, TeleRehabilitation, TeleRenal,
 TeleSleep - Pediatric Sleep Disturbance Clinic,
 TeleSLP (Speech-Language & Pathology), TeleStroke,
 TeleUrogynecology, TeleUrology
- Fees to be paid by users: to be covered by the health care insurance

must have been profitable!
EU: MobiHealth
- Started services: yet
- Services to be provided:
 - Integrated Homecare in women with high-risk pregnancies
 - Tele Trauma
 - Telemonitoring of patients with ventricular arrhythmia
 - Support of home-based healthcare services
 - Outdoors patient's rehabilitation
 - Monitoring of vital parameters in patients with respiratory insufficiency
- Fees to be paid by users: yet

should be profitable
4. But many vendors, health care and network providers
Terminal examples (A&D Medical)

Wireless Precision Scale
Wireless Automatic Blood Pressure Monitor
Wireless Activity Monitor
Terminal example (DELPHI)

- blood pressure
- glucose level
- pulse rate
- pulse oximetry
- temperature
- weight
5. Design requirements

Networks

Body Area Network:
battery operative, small/light, wired/wireless, skin surface
transmission, human friendly touch sensors

Access network:
Real time/non real time, QoS, wired/wireless (Mobile,
Wireless LAN, ADSL, FTTH, Cable)

Core Network:
QoS (PSTN, IP Network, NGN)
Security

1. Easy to use: cryptography, authentication, attack prevention
2. Easy generation of encryption key with high security performance: Usage of specific information a mobile terminal
3. Less CPU power to generate a key for encryption/decryption
4. No need to preset troublesome security keys by users
Vital Sign Sensors

<table>
<thead>
<tr>
<th>Sensors</th>
<th>Diseases to be telemonitored</th>
<th>Requirements for sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure</td>
<td>High pressure, heart diseases</td>
<td>No cuff</td>
</tr>
<tr>
<td>ECG</td>
<td>Heart diseases</td>
<td>Comfortable touch for the skin for the long time use</td>
</tr>
<tr>
<td>Glucose</td>
<td>Diabetes, Obesity</td>
<td>No finger pricks</td>
</tr>
<tr>
<td>Pulse oximetry</td>
<td>Chronic Obstructive Pulmonary Disease</td>
<td>Small finger holding pressure</td>
</tr>
<tr>
<td>Stethoscope</td>
<td>Chest diseases, stomach diseases</td>
<td>Touch position indication on the body</td>
</tr>
</tbody>
</table>
6. Standardization for the connected health systems

Functional interface reference model

Vital signs*: body temperature, pulse rate, blood pressure, respiratory rate, pulse oximetry, glucose

**: DVS: Digitized Vital Sign interface

* Electrodes attached to human body

** Raw Sensed electric analog signal

To be standardized

All rights reserved
Functional interface reference model (continued)

- **DVS**: Wired/wireless station set
- **TOB**: Transmission On the Body interface
- **SSC**: Station Set Connection interface

Transmission On the Body interface

Station Set Connection interface
Interfaces to be standardized

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Descriptions</th>
<th>Relevant standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVS</td>
<td>Digitized Vital Sign Interface</td>
<td>IEC60601-2-51 (in case of 12 leads ECG), ...</td>
</tr>
<tr>
<td>TOB</td>
<td>Transmission on the Body Interface</td>
<td>IEEE 802.15.4, 802.15.6 and ...</td>
</tr>
<tr>
<td>SSC</td>
<td>Station Set Connection Interface</td>
<td>USB, Blue tooth, ...</td>
</tr>
</tbody>
</table>
7. Standardization bodies

- ITU-T SG 16 Q.28 “Multimedia framework for e-health applications”
- Other bodies:
 - e-Health Standardization Coordination Group (eHSCG)
 - World Health Organization (WHO) and its Regional Offices: EURO; EMRO; WPRO
 - ISO/TC215, CEN/TC 251, IEC, ETSI, IETF, IEEE 1073 and other relevant standardization bodies;
 - HL7, DICOM, OASIS IHC TC
 - Continua

All rights reserved 18
8. Summary

(1) Technology, products & standardization are here, but no successful business!

(2) However, awareness to the health is booming all over the world.

(3) As a first step, we have to concentrate on the personal/public health management systems using the connected health technology.

(4) By doing (3) we have to complete the connected health technology to meet the requirements of the professional health care providers.

(5) We have to persuade authorities to facilitate the connected health systems into medical society based on huge amount of data.
Thank you very much!